
Title How to Deploy A Smart Contract Using 
Python Web3 Tools: A Full Coverage

Description Tutorial

Date June 01, 2022

Author Arashtad

Author URI https://Arashtad.com

Arashtad.com Design and development solutions

arashtad

In this tutorial, we are going to see how we can interact with smart contracts using Solidity outside of 
the Remix IDE. To do this, we should somehow do the process of executing transactions and 
deploying the contracts with a programming language and a module. Web3 modules provide means 
for serving our purpose through JavaScript or python. We are going to deploy a smart contract using 
Python web3 tools and use VS code as our IDE.

https://arashtad.com/
http://arashtad.com/
https://arashtad.com/services/


Arashtad.com Design and development solutions

arashtad

Essentials for Using Python Web3 Tools

This series of tutorials is the continuation of the Solidity tutorials in Remix IDE. However, we use VS Code or 
sublime text instead of Remix IDE. So, it is highly recommended that you read those articles before you begin 
this series of tutorials. It is also useful if you read the getting started with DAPPs tutorials as well to be more 
familiar with how to install Web3 Python on your operating system and some web3.py hands-on sample codes. 
So, let’s get started with more exciting steps into developing a decentralized web application.

Installing VS Code

If you are going to install VS Code on Linux, you are on the same page as me and you can follow along with 
this installation guide. Otherwise, don’t worry! Because there is nothing fancy about installing VSCode on other 
operating systems. On Linux, download the file from this link and after it has been downloaded, open the 
terminal in the download directory. Then, enter this command:

sudo apt install
Wait for a few minutes and it should get installed. Now, you can open the VS Code and create a folder for our 
new project.

Creating the project folder:

So, you can see that a terminal opens. We create a folder inside to write a simple storage code again this time 
with VS Code:

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


Arashtad.com Design and development solutions

arashtad

Serialization & Deserialization

And we get into the folder by typing:

After opening the created file, we can copy the simple storage code that we wrote in the “Smart 
contracts using Solidity tutorial” and run it.

mkdir web3_simple_storage

Arashtad.com Design and development solutions

cd web3_simple_storage

And then, we create a file named SimpleStorage.sol using:

touch SimpleStorage.sol

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


Arashtad.com Design and development solutions

arashtad

Remember in the python scripts (contracts.py) when we sent the instantiateMsg and set the 
JSON message to {"count": 15}:

Notice that VS Code must have Solidity pre-installed but if you are coding with other text 
editors, you can head over to this link for installation guide on your operating system.

/ SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.9.0;

contract SimpleStorage {
    uint256 Salary;

    // This is a comment!
    struct Employees {
        uint256 Salary;
        string name;
    }

    Employees[] public Employees;
    mapping(string => uint256) public nameToSalary;

    function store(uint256 _Salary) public {
        Salary = _Salary;
    }

    function retrieve() public view returns (uint256) {
        return Salary;
    }

    function addEmployees(string memory _name, uint256 _Salary) 
public {
        Employees.push(Employees(_Salary, _name));
        nameToSalary[_name] = _Salary;
    }
}

Arashtad.com Design and development solutions

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

Writing the Python Scripts

Now in order to deploy the above contract, we create a python file called deploy.py. We can do 
this by typing:

touch deploy.py

Now, in order to compile our Solidity code, we need to install a package called “py-solc-x”. To 
do that, write this in your terminal:

pip install py-solc-x

And in this file, we write:

with open("./SimpleStorage.sol","r") as file:
simple_storage_file = file.read()

Arashtad.com Design and development solutions

Once we installed the package, we import it into our python file like this:

from solcx import compile_standard

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

Notice that we should also check the version of our Solidity when it is installed and also check 
in our .sol file. Now, in our console, if we write:

python3 deploy.py

Arashtad.com Design and development solutions

import json

with open("./SimpleStorage.sol","r") as file:
simple_storage_file = file.read()

compiled_sol = compile_standard ({
"language":"solidity",
"sources": {"SimpleStorage.sol":{"content": 

simple_storage_file}},
"setting": {

"outputSelection":{
"*": {"*": 

["abi","metadata","evm.bytecode","evm.sourceMap"]}
}

},
},

solc_version="0.6.0",
)

with open("compiled_code.json","w") as file:
json.dump(compiled_sol,file)

And, here is the rest of the python code:

We will see that a json file is created in the file directory leading us to some key data. The data 
is about the contract that we have just written such as Byte Code, ABI (which stands for 
abstract binary interface), the address of the contract, and so on.

In order to get out a little of this important data, we write the following scripts:

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

Now, if we print the abi and byte_code, we will see some large output. These key data will 
later be used to run our smart contract.

byte_code = compiled_sol["contracts"]["SimpleStorage.sol"]
["SimpleStorage"]["evm"]["bytecode"]["object"]

abi = compiled_sol["contracts"]["SimpleStorage.sol"]
["SimpleStorage"]["evm"][“abi”]

Now, we are going to use Ganache as a simulated blockchain to deploy our smart contract 
simple storage on it. We also continue using our python web3 tools to deploy the smart contract 
on Ganache IDE simulated blockchain. Furthermore, we have provided some guides 
throughout the article for installing web3.py module.

Using Python Web3 tools alongside Ganache 
as A Simulated Blockchain

Arashtad.com Design and development solutions

Managing the scripts

Previously, we learned how to retrieve the bytecode and the ABI of the SimpleSorage.sol 
contract. Now, we’ve brought the codes with some editions to make it work more perfectly.

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

And the deploy.py script goes like this:

{
 "count": 5 
}

Arashtad.com Design and development solutions

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.9.0;

contract SimpleStorage {

    uint256 Salary;

    // This is a comment!
    struct Employees {
        uint256 Salary;
        string name;
    }

    Employees[] public employee;
    mapping(string => uint256) public nameToSalary;

    function store(uint256 _Salary) public {
        Salary = _Salary;
    }
    
    function retrieve() public view returns (uint256){
        return Salary;
    }

    function addPerson(string memory _name, uint256 _Salary) public 
{
        employee.push(Employees(_Salary, _name));
        nameToSalary[_name] = _Salary;
    }
}

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

import json

from web3 import Web3

from solcx import compile_standard, install_solc
import os
from dotenv import load_dotenv

load_dotenv()

with open("./SimpleStorage.sol", "r") as file:
simple_storage_file = file.read()

install_solc("0.6.0")
print("installed")

compiled_sol = compile_standard(
{

"language": "Solidity",
"sources": {"SimpleStorage.sol": {"content": 

simple_storage_file}},
"settings": {

"outputSelection": {
"*": {

"*": ["abi", "metadata", "evm.bytecode", 
"evm.bytecode.sourceMap"]

}
}

},
},

solc_version="0.6.0",
)

with open("compiled_code.json", "w") as file:
json.dump(compiled_sol, file)

bytecode = compiled_sol["contracts"]["SimpleStorage.sol"]
["SimpleStorage"]["evm"]["bytecode"]["object"]

abi = json.loads( compiled_sol["contracts"]["SimpleStorage.sol"]
["SimpleStorage"]["metadata"])["output"]["abi"]

Arashtad.com Design and development solutions

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

Notice that you should also install “dotenv package” using the following command in the 
terminal:

pip install python-dotenv

now if you print and bytecode:

Result:

[{'inputs': [{'internalType': 'string', 'name': '_name', 'type': 
'string'}, {'internalType': 'uint256', 'name': '_Salary', 'type': 
'uint256'}], 'name': 'addPerson', 'outputs': [], 'stateMutability': 
'nonpayable', 'type': 'function'}, {'inputs': [{'internalType': 
'uint256', 'name': '', 'type': 'uint256'}], 'name': 'employee', 
'outputs': [{'internalType': 'uint256', 'name': 'Salary', 'type': 
'uint256'}, {'internalType': 'string', 'name': 'name', 'type': 
'string'}], 'stateMutability': 'view', 'type': 'function'}, 
{'inputs': [{'internalType': 'string', 'name': '', 'type': 
'string'}], 'name': 'nameToSalary', 'outputs': [{'internalType': 
'uint256', 'name': '', 'type': 'uint256'}], 'stateMutability': 
'view', 'type': 'function'}, {'inputs': [], 'name': 'retrieve', 
'outputs': [{'internalType': 'uint256', 'name': '', 'type': 
'uint256'}], 'stateMutability': 'view', 'type': 'function'}, 
{'inputs': [{'internalType': 'uint256', 'name': '_Salary', 'type': 
'uint256'}], 'name': 'store', 'outputs': [], 'stateMutability': 
'nonpayable', 'type': 'function'}]

Arashtad.com Design and development solutions

Bytecode and ABI:

print(abi)

print(bytecode)

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

Result:

608060…long number… 6000033

Besides, once you run the python script, you will see that a json file is created in the directory 
as the result of json.dump (compiled_sol, file) line.

So, let’s deploy our smart contract using Python web3 tools on a blockchain. For our first 
experiences and for learning purposes, we use Ganache (remember we used JavaScript VM 
and injected web3 as our test networks in remix IDE).

Ganache is a simulated blockchain designed for test and learning purposes and helps us 
develop our local blockchain. It is also worth mentioning that it is not connected to any other 
blockchains out there. However, it acts just the same as real-world one.

Once you install and open Ganache, you will be able to see that you are given 10 accounts with 
their own addresses and private keys on them. (To see the private key, just click on the key 
sign on the right side of every account)

Arashtad.com Design and development solutions

Deploying the Smart Contract Using Python on 
Ganache

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

And if you look at the top of the Ganache IDE, you will be able to see the RPC server address 
and NetworkID. Both of them are necessary for us to connect to the blockchain.

pip install eth-tester web3 pip install eth-tester[py-evm] pip3 
install web3

Now, the next step to connect to the blockchain using python is to install web3.py. If you haven’t 
read the getting started with Dapps tutorials, you can follow along with these guides to be able 
to install it on your operating system. However, These guidelines only show you how to install it 
on Linux. For Windows, you might need to install some Visual Studio C dependencies that are 
mentioned in the raised Error in the command prompt after you attempt to install it on windows. 
Now on Linux, on VS Code terminal, write these 3 commands to be able to install the web3 
module:

Arashtad.com Design and development solutions

Installing web3

And now we import the web3 module:

from web3 import Web3

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

To connect to the blockchain instead of Metamask, we need an HTTP provider which for 
Ganache is HTTP://127.0.0.1:7545 right under the RPC server. We also need the chain id 
which we copy from the network id on top of the Ganache user interface and the address in 
addition to its private key is also required:

web3 = Web3(Web3.HTTPProvider("HTTP://127.0.0.1:7545"))
chain_id = 1337

address = "0xae21A27b5771Ee8D53eCf5b7b856B33C3B4AEE5D"
private_key =  
"0x9cf74fb71811e4f360df39e3c13790d8fde312d353b8972937c8f596d052de45"

SimpleStorage = web3.eth.contract(abi = abi, bytecode = bytecode)

Arashtad.com Design and development solutions

Connecting to Ganache CLI

nonce = web3.eth.getTransactionCount(address)

Ready for Deploying the Smart Contract

What’s A Nonce?

Then, we need a nonce. A nonce is the abbreviation of a “number used only once”. Besides, it’s 
a number that is added to an encrypted (hashed) block in a blockchain that when it is rehashed, 
meets certain difficulty levels. The nonce is the number that miners are solving for. Here to get 
a nonce from our address or in other words to get the latest transaction of our address, we 
write:

And if you print this variable, the terminal returns 0 as we have had no transaction. Having 
defined all the above variables, we can now submit the transaction that deploys the contract:

After defining the provider and an account, it is time to define our contract using the ABI and the 
Bytecode of the SimpleStorage:

transaction = SimpleStorage.constructor().buildTransaction(
{
"chainId": chain_id,
"gasPrice": web3.eth.gas_price,
"from": address,
"nonce": nonce,

}
)

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

then we sign the transaction by writing:

tx_hash = web3.eth.send_raw_transaction(signed_txn.rawTransaction)

Arashtad.com Design and development solutions

print("Waiting for transaction to finish...")

tx_receipt = web3.eth.wait_for_transaction_receipt(tx_hash)

print(f"Done! Contract deployed to {tx_receipt.contractAddress}")

So our raw transaction is the one we deploy using the signed transaction:

And if we run the code by typing:

It is now the time to finally deploy our contract. As it might take some time when we work with 
real blockchain test nets and providers like Infura, we print the level we are in, to be able to 
track the process at the time of running the code:

signed_txn = web3.eth.account.sign_transaction(transaction,
                            private_key=private_key)

print("Deploying Contract…")

After the transaction is confirmed, we can say that it is finally mined and our contract is 
deployed to the blockchain:

python3 deploy.py

In the terminal, we will see a result like this:

Deploying Contract... Waiting for transaction to finish... Done! 
Contract deployed to 0x88A33c204C622683Dc2b0aaD78d51B86a9b35CAB

Which approves the contract has been successfully deployed. Congratulations!

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

Arashtad.com Design and development solutions

After Deployment Notes

And if we head over to transactions tab on the top, we will be able to see our transaction is 
recorded there.

Now if we go to Ganache and check the balance of the first account that we copied its address 
and private key, we will see that it is 99.99 which means that some of its balance has been 
used for the gas fee.

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

In this section, we are going to see how we can avoid pasting our private key inside our script 
file and save it somewhere inaccessible to others. This may happen because we may share our 
scripts on GitHub. The first thing that we should do here is to export the private key in our 
console:

Export 
PRIVATE_KEY=0x9cf74fb71811e4f360df39e3c13790d8fde312d353b8972937c8f5
96d052de45

private_key = os.getenv("PRIVATE_KEY")

Arashtad.com Design and development solutions

export 
PRIVATE_KEY=0x9cf74fb71811e4f360df39e3c13790d8fde312d353b8972937c8f5
96d052de45

How to Guard Our Private Key in A Smart Contract Using Python Web3 Tools

And now this way the private key saves just the same private key as we had pasted in front of 
it. But notice that this method only works on Linux and Mac OS, but not on Windows. However, 
there are ways to cover this on Windows. There is also another way to save the private key 
somewhere safe and that is creating a .env file in your directory. To do so, first, make sure you 
have dotenv python module installed on your os the way we did in the last section of our tutorial 
and load it. In summary, make sure you add the following scripts in deploy.py file:

And also for private key keep the private_key = os.getenv(“PRIVATE_KEY”) where it is. And in 
the .env file, write:

And inside the script instead of pasting the private key itself, we write:

export 
PRIVATE_KEY=0x9cf74fb71811e4f360df39e3c13790d8fde312d353b8972937c8f5
96d052de45

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

Also to avoid publicizing it on GitHub create a .gitignore file and in it, write:

.env

simple_storage = 
web3.eth.contract(address=tx_receipt.contractAddress, abi=abi)

print(f"Initial Stored Value 
{simple_storage.functions.retrieve().call()}")

greeting_transaction = 
simple_storage.functions.store(38).buildTransaction(

{
"chainId": chain_id,
"gasPrice": web3.eth.gas_price,
"from": address,
"nonce": nonce + 1,
}

)

signed_greeting_txn = web3.eth.account.sign_transaction(
greeting_transaction, private_key=private_key)

tx_greeting_hash = 
web3.eth.send_raw_transaction(signed_greeting_txn.rawTransaction)

print("Updating stored Value…")

tx_receipt = web3.eth.wait_for_transaction_receipt(tx_greeting_hash)

print(simple_storage.functions.retrieve().call())

Arashtad.com Design and development solutions

How to Interact with A Smart Contract Using 
Python Web3

Now that we have deployed the SimpleStorage.sol contract to the simulated blockchain on 
Ganache, it’s time to interact with it. Suppose we want to store a number like 38 and then be 
able to retrieve it as well, we write:

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

Arashtad.com Design and development solutions

After Deployment Notes

Now if we go to Ganache, to the transactions, we are going to see the contract call with the blue 
color and the details of the transaction.

Notice that for the nonce, we wrote nonce+1 because every time we do something on 
blockchain the nonce needs to be unique. And also remember that if you call the contract and 
retrieve a number, there is no need for any transaction and before saving any number to the 
contract, the result of retrieve will be 0 but after saving the number by creating the transaction 
on the contract (for storing the number) the answer to retrieve call will be the saved number 
which is 38. Now let’s see the result on the terminal:

Initial Stored Value 0 Updating stored Value... 38

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

And this our complete python code:

import json
from web3 import Web3
from solcx import compile_standard, install_solc
import os
from dotenv import load_dotenv

load_dotenv()

with open("./SimpleStorage.sol", "r") as file:
simple_storage_file = file.read()

install_solc("0.6.0")
print("installed")

compiled_sol = compile_standard(
{

"language": "Solidity",
"sources": {"SimpleStorage.sol": {"content": 

simple_storage_file}},
"settings": {

Arashtad.com Design and development solutions

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

"outputSelection": {
"*": {

"*": ["abi", "metadata", 
"evm.bytecode", "evm.bytecode.sourceMap"]

}
}

},
},

solc_version="0.6.0",
)

with open("compiled_code.json", "w") as file:
json.dump(compiled_sol, file)

bytecode = compiled_sol["contracts"]["SimpleStorage.sol"]
["SimpleStorage"]["evm"][
"bytecode"
]["object"]

abi = json.loads(compiled_sol["contracts"]["SimpleStorage.sol"]
["SimpleStorage"]["metadata"])["output"]["abi"]

web3 = Web3(Web3.HTTPProvider("HTTP://127.0.0.1:7545"))
chain_id = 1337

address = "0xae21A27b5771Ee8D53eCf5b7b856B33C3B4AEE5D"

private_key = os.getenv("PRIVATE_KEY")

print(private_key)

SimpleStorage = web3.eth.contract(abi = abi,bytecode = bytecode)

nonce = web3.eth.getTransactionCount(address)

transaction = SimpleStorage.constructor().buildTransaction(
{
"chainId": chain_id,
"gasPrice": web3.eth.gas_price,
"from": address,
"nonce": nonce,
}

)

Arashtad.com Design and development solutions

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

signed_txn = web3.eth.account.sign_transaction(transaction, 
private_key=private_key)

print("Deploying Contract...")

tx_hash = web3.eth.send_raw_transaction(signed_txn.rawTransaction)

print("Waiting for transaction to finish...")

tx_receipt = web3.eth.wait_for_transaction_receipt(tx_hash)

print(f"Done! Contract deployed to {tx_receipt.contractAddress}")

#interacting with the deployed contract

simple_storage = 
web3.eth.contract(address=tx_receipt.contractAddress, abi=abi)

print(f"Initial Stored Value 
{simple_storage.functions.retrieve().call()}")

greeting_transaction = 
simple_storage.functions.store(38).buildTransaction(

{
"chainId": chain_id,
"gasPrice": web3.eth.gas_price,
"from": address,
"nonce": nonce + 1,

}
)
signed_greeting_txn = web3.eth.account.sign_transaction(
greeting_transaction, private_key=private_key)

tx_greeting_hash = 
web3.eth.send_raw_transaction(signed_greeting_txn.rawTransaction)

print("Updating stored Value...")

tx_receipt = web3.eth.wait_for_transaction_receipt(tx_greeting_hash)

print(simple_storage.functions.retrieve().call())

Arashtad.com Design and development solutions

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

Up to now, we have contributed with the Ganache interface. But, what if we want to interact with 
it using Command Line Interface also known as CLI? To do that, we need to install a couple of 
things. First, you should install node.js using this link.

You also need to install ganache-cli and there are 2 ways to so do that.

1. Installing yarn

npm install –global yarn

Arashtad.com Design and development solutions

yarn global add ganache-cli

Interacting with Smart Contracts Using Commnad
Line Interface (CLI)

And

2. Installing through npm command:

You can make sure about the installation by writing:

npm install -g ganache-cli

Once you made sure that it has been installed, you can write in your terminal:

ganache-cli –version

And this is going to show all the data of the Ganache account without the interface being open, 
including the accounts, private keys, and so on.

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

You might always need to get the same private keys from the Ganache CLI. So, you can type:

ganache-cli

ganache-cli –deterministic

Arashtad.com Design and development solutions

Up to now, we have deployed our contracts on different test net blockchains. In Remix IDE, we 
deployed our contract on injected web3 and JavaScript VM, and on Python, we have used 
Ganache as a simulated blockchain. Now, let’s deploy our smart contract using Python Web3 
tools. If we want to switch to mainnet blockchain and run our contract transactions on it, we 
have 2 options. The first one is to download all the Ethereum blockchain records using the Geth 
command from the go Ethereum library. Although this will give you a full node Ethereum 
blockchain locally, it is going to cost you so much memory, bandwidth, and a full-time running 
computer only to give you a full node on the Ethereum blockchain. However, this method is 
useful for some purposes but for our case, we can use another method which is using a host 
node like Infura.

Using Infura:
So in order to use Infura, you need to simply sign up or log in (if you have signed up before). 
Then, after you enter your profile, copy the required endpoint (which could be mainnet or any 
testnet like Rinkeby, Faucet, Ropsten .etc) from the settings and paste it into the HTTP Provider 
of your script.

And this gives you always the same wallet addresses. Also, notice that when you are working 
with the ganache-cli, you should have another terminal on VS Code to run the deploy.py file 
and interact with the smart contract so that you can use the first one for ganache-cli.

Last Steps of Interacting with A Smart Contract
 Using Python Web3: Infura Host Node

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

Here, we should use Rinkeby because we do not want to spend real ETH! And as you 
remember we have received some Rinkeby ETH from its Faucet in our Metamask wallet 
Rinkeby account. The format of the endpoint is like this:

https://.infura.io/v3/ 

Arashtad.com Design and development solutions

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

We can copy this to our code, so instead of:

web3 = Web3(Web3.HTTPProvider("HTTP://127.0.0.1:7545"))

Arashtad.com Design and development solutions

We write:

web3 = Web3(Web3.HTTPProvider("https://.infura.io/v3/ "))

Notice that you should enter the type of your endpoint (which is Rinkeby here) and your special 
project ID because it varies from one account to another. Also, remember that you shouldn’t 
share your Infura endpoint URL with anybody so we use the same technique as we used for the 
private key. On .env file we write:

export Infura_EndPoint = "https://.infura.io/v3/ "

And in the deploy.py file we write:

web3 = Web3(Web3.HTTPProvider(os.getenv("Infura_EndPoint")))

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

and now we need a chain ID which we can get from this link.

chain_id = 4

Arashtad.com Design and development solutions

For Rinkeby, the chain id is 4. So, we enter it in our code:

Smart Contract Using Python Web3 Tip: Getting 
the Chain ID

Then, we need to copy our Metamask address and private key from our wallet account and 
paste it into our python file. (private_key on .env file).

And if we run our deploy.py file, the result will be as follows:

installed Deploying Contract... Waiting for transaction to finish... 
Done! Contract deployed to 
0x7F0fc6939B12CE506337294c4c96C2d3F64F9DF6 Initial Stored Value 0 
Updating stored Value... 38

As you can see, since we are running our contract on a mainnet, again the process is a lot 
slower compared to what we saw when we used Ganache.

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

Arashtad.com Design and development solutions

Rinkeby Etherscan:

You can see 2 transactions are recorded. The first one is the one related to when we deployed 
the contract.

You can also track the above transaction from ( https://rinkeby.etherscan.io/) using the receipt 
transaction contract address that we have just printed on the terminal.

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

And the 2nd one is related to when we stored the number 38 in it.

import json
from web3 import Web3
from solcx import compile_standard, install_solc
import os
from dotenv import load_dotenv

load_dotenv()

with open("./SimpleStorage.sol", "r") as file:
simple_storage_file = file.read()

install_solc("0.6.0")
print("installed")

compiled_sol = compile_standard(
{

Arashtad.com Design and development solutions

Congratulations! We have finally managed to deploy a smart contract using Python Web3 tools 
on mainnet.

Our complete python code goes like this:

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

"language": "Solidity",
"sources": {"SimpleStorage.sol": {"content": 

simple_storage_file}},
"settings": {

"outputSelection": {
"*": {

"*": ["abi", "metadata", "evm.bytecode", 
"evm.bytecode.sourceMap"]

}
}

},
},
solc_version="0.6.0",

)

with open("compiled_code.json", "w") as file:
json.dump(compiled_sol, file)

bytecode = compiled_sol["contracts"]["SimpleStorage.sol"]
["SimpleStorage"]["evm"]["bytecode"]["object"]

abi = json.loads(
compiled_sol["contracts"]["SimpleStorage.sol"]["SimpleStorage"]
["metadata"]
)["output"]["abi"]

web3 = Web3(Web3.HTTPProvider(os.getenv("Infura_EndPoint")))
chain_id = 4

address = "0x25E681EE76469E4cF846567b772e94e082907117"
private_key = os.getenv("PRIVATE_KEY")

SimpleStorage = web3.eth.contract(abi = abi,bytecode = bytecode)

nonce = web3.eth.getTransactionCount(address)

transaction = SimpleStorage.constructor().buildTransaction(
{
"chainId": chain_id,
"gasPrice": web3.eth.gas_price,
"from": address,
"nonce": nonce,
}

)

Arashtad.com Design and development solutions

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

signed_txn = web3.eth.account.sign_transaction(transaction, 
private_key=private_key)
print("Deploying Contract...")

tx_hash = web3.eth.send_raw_transaction(signed_txn.rawTransaction)

print("Waiting for transaction to finish...")

tx_receipt = web3.eth.wait_for_transaction_receipt(tx_hash)

print(f"Done! Contract deployed to {tx_receipt.contractAddress}")

#interacting with the deployed contract

simple_storage = 
web3.eth.contract(address=tx_receipt.contractAddress, abi=abi)
print(f"Initial Stored Value 
{simple_storage.functions.retrieve().call()}")
greeting_transaction = 
simple_storage.functions.store(38).buildTransaction(

{
"chainId": chain_id,
"gasPrice": web3.eth.gas_price,
"from": address,
"nonce": nonce + 1,
}

)

signed_greeting_txn = web3.eth.account.sign_transaction(
greeting_transaction, private_key=private_key)
tx_greeting_hash = 
web3.eth.send_raw_transaction(signed_greeting_txn.rawTransaction)
print("Updating stored Value...")
tx_receipt = web3.eth.wait_for_transaction_receipt(tx_greeting_hash)

print(simple_storage.functions.retrieve().call())

Arashtad.com Design and development solutions

For explanations of the above code you can refer to the previous sections. Because this script 
is the same as the previous articles with the difference that we have changed the HTTP 
Provider, the chain id, account address, and the private key.

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/


arashtad

Summing Up
In this tutorial, we have got started with python web3 tools to be able to deploy our 
Solidity smart contracts outside of Remix IDE. The IDE that we have chosen to work 
with is VS Code. We also installed some dependencies to work with python web3 
tools. Python web3 tools compile the Solidity smart contracts and create some JSON 
files containing the bytecode and opcodes and ABI which is necessary to deploy our 
contracts.

Besides, we learned how to use Ganache IDE as a simulated blockchain. We also 
used the RPC URI, chain id, test accounts, their addresses, and private keys to 
deploy the smart contract called simple storage. We have also managed to install the 
web3.py module.

Finally, we have managed to connect to the Infura host node as an alternative for 
Ganache simulated blockchain. As a result, we have dealt with a more realistic kind of 
blockchain. We have also used chainlist as a way to retrieve the chain id. 
Furthermore, As we have deployed our smart contract on the Rinkeby testnet, we 
checked Rinkeby Etherscan to check the records of our transaction on the Ethereum 
Rinkeby testnet blockchain.

Arashtad.com Design and development solutions

https://www.linkedin.com/company/arashtad
https://codepen.io/arashtad
https://jsfiddle.net/user/arashtadcompany/
https://dribbble.com/Arashtad
https://www.behance.net/arashtad
http://arashtadstudio.tumblr.com/
https://www.slideshare.net/Arashtad
https://www.youtube.com/channel/UCoIrn2XzoaJT6vz6NuB8iTQ
https://vimeo.com/arashtad
https://twitter.com/arashtad
https://www.reddit.com/user/ArashtadStudio
https://www.quora.com/profile/Arashtad
https://t.me/arashtadstudio
https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31

