‘ ‘/\R/\S HTAD

Title HOW T0O DEPLOY N\ SMART CONTRACT USING
PYTHON WEB3 TOOLS: N\ FULL COVERANAGE
Description Tutorial
Date June 01, 2022
Author Arashtad
Author URI https://Arashtad.com
ARASHTAD Iy

/4DW TO DEPLOY A SMART CONTRACT
USING PYTHON WEBS TOOLS

A FULL COVERAGE

In this tutorial, we are going to see how we can interact with smart contracts using Solidity outside of
the Remix IDE. To do this, we should somehow do the process of executing transactions and
deploying the contracts with a programming language and a module. Web3 modules provide means
for serving our purpose through JavaScript or python. We are going to deploy a smart contract using
Python web3 tools and use VS code as our IDE.

ARANASHTAD.COM DESICGN AND DEVELOPMENT SOLUTIONS

https://arashtad.com/
http://arashtad.com/
https://arashtad.com/services/

‘/\R/\S HTAD

A

ESSENTIALS FOR USING PYTHON WEB3 TOOLS

This series of tutorials is the continuation of the Solidity tutorials in Remix IDE. However, we use VS Code or
sublime text instead of Remix IDE. So, it is highly recommended that you read those articles before you begin
this series of tutorials. It is also useful if you read the getting started with DAPPs tutorials as well to be more
familiar with how to install Web3 Python on your operating system and some web3.py hands-on sample codes.
So, let's get started with more exciting steps into developing a decentralized web application.

INSTALLING VS CODE

If you are going to install VS Code on Linux, you are on the same page as me and you can follow along with
this installation guide. Otherwise, don’t worry! Because there is nothing fancy about installing VSCode on other
operating systems. On Linux, download the file from this link and after it has been downloaded, open the
terminal in the download directory. Then, enter this command:

sudo apt install
Wait for a few minutes and it should get installed. Now, you can open the VS Code and create a folder for our

new project.

EXPLORER s] Get Storted x 11 B

 BOLIDITY AND WAIND CODES

Visual Studio Code

Editing evolved

* Get Started with VS Code

Discover the best customizations to make V5 Code yours.

* Learn the Fundamentals
Juirrp right into VS Code and get an cvervesw of the must
have heatures.

~fDeskiop © Boost your Productivity

[iH p=maes of Sheinw WeliEMmE page on sLartun
@040 _ g 0
OEB - m08T®RWs E T LR R T

Creating the project folder:

So, you can see that a terminal opens. We create a folder inside to write a simple storage code again this time
with VS Code:

NARNASHTAD.COM DESIGN AND DEVELOPMENT SOLUTIONS

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

‘/\F\’/\SHT/\D

A

mkdir web3 simple storage

And we get into the folder by typing:

cd web3 simple storage

And then, we create a file named SimpleStorage.sol using:

touch SimpleStorage.sol

@ EXPLORER ¢ Simplestoroge.sod X m .-

« SOLIDTY AND WIB) CODES web3_simgle storage » § SimpleStorage.se
« webd__simple_storage 1
SimpleStorage sol

TERdi AL [2] besh -web3__simple_storsge =+ ODE ~ X

nohanad@mohamad - Lenove-6510: - /Desktop/solidity /Solidity and web3 jesd mkdir web3 simple storage
nohanad@mohamad - LEnove-6510: -/ Desktop /se codess cd web3_ simple storage
nohanad@mohamad - Lenove-G518: - /D top codes ‘webd irple starages touch SimpleStorage. sol
nohasadEmohamad - Lenove- G518 - /Desktop ! e_storages [

L1t]

a4 QUTLINE
@040 Lt Col1 Spacesd UTEE LF PainTest 5 0O
N 8
OF N Bl R-A B B AN GBoDeD A 2R s

After opening the created file, we can copy the simple storage code that we wrote in the “Smart
contracts using Solidity tutorial” and run it.

ARASHTAD.COM DESIGN AND DEVELOPMENT SOLUTIONS

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

NARASHTAD

Remember in the python scripts (contracts.py) when we sent the instantiateMsg and set the
JSON message to {"count": 15}:

/ SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.9.0;

contract SimpleStorage ({
uint256 Salary;

// This is a comment!

struct Employees {
uint256 Salary;
string name;

}

Employees[] public Employees;
mapping(string => uint256) public nameToSalary;

function store(uint256 _Salary) public ({
Salary = _Salary;
}

function retrieve () public view returns (uint256) ({
return Salary;

}

function addEmployees (string memory name, uint256 _Salary)
public ({
Employees.push (Employees (_Salary, _name));
nameToSalary[name] = Salary;

Notice that VS Code must have Solidity pre-installed but if you are coding with other text
editors, you can head over to this link for installation guide on your operating system.

ARASHTAD.COM DESIGN AND DEVELOPMENT SOLUTIONS

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

o

f N\ ARASHTAD

WRITING THE PYTHON SCRIPTS

Now in order to deploy the above contract, we create a python file called deploy.py. We can do
this by typing:

touch deploy.py

And in this file, we write:

with open("./SimpleStorage.sol","r") as file:
simple storage file = file.read()

Now, in order to compile our Solidity code, we need to install a package called “py-solc-x". To
do that, write this in your terminal:

pip install py-solc-x

Once we installed the package, we import it into our python file like this:

from solcx import compile standard

NARNASHTAD.COM DESIGN AND DEVELOPMENT SOLUTIONS

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

NARASHTAD

And, here is the rest of the python code:

import json

with open("./SimpleStorage.sol","r") as file:
simple storage file = file.read()

compiled sol = compile_ standard ({
"language'":"solidity",
"sources": {"SimpleStorage.sol":{"content":
simple storage file}},
"setting": {
"outputSelection": {
L AR AL AF
["abi", "metadata", "evm.bytecode", "evm.sourceMap"]}
}
by
by
solc_version="0.6.0",

)

with open("compiled code.json","w") as file:
json.dump (compiled sol,file)

Notice that we should also check the version of our Solidity when it is installed and also check
in our .sol file. Now, in our console, if we write:

python3 deploy.py

We will see that a json file is created in the file directory leading us to some key data. The data
Is about the contract that we have just written such as Byte Code, ABI (which stands for
abstract binary interface), the address of the contract, and so on.

In order to get out a little of this important data, we write the following scripts:

ARASHTAD.COM DESIGN AND DEVELOPMENT SOLUTIONS

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

"/”‘)AR/\SHTAD

& A

byte code = compiled sol["contracts"]["SimpleStorage.sol"]
["SimpleStorage"] ["evm"] ["bytecode"] ["object"]

abi = compiled sol["contracts"]["SimpleStorage.sol"]
["SimpleStorage"] ["evm"] [“abi”]

Now, if we print the abi and byte code, we will see some large output. These key data will
later be used to run our smart contract.

USING PYTHON WEB3 TOOLS ALONGSIDE GANACHE

NS N\ SIMULATED BLOCKCHAIN
Now, we are going to use Ganache as a simulated blockchain to deploy our smart contract
simple storage on it. We also continue using our python web3 tools to deploy the smart contract

on Ganache IDE simulated blockchain. Furthermore, we have provided some guides
throughout the article for installing web3.py module.

MANAGING THE SCRIPTS

Previously, we learned how to retrieve the bytecode and the ABI of the SimpleSorage.sol
contract. Now, we've brought the codes with some editions to make it work more perfectly.

NARNASHTAD.COM DESIGN AND DEVELOPMENT SOLUTIONS

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

A\ VAN=] ol VAN B

// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.9.0;
contract SimpleStorage ({
uint256 Salary;
// This is a comment!
struct Employees {
uint256 Salary;

string name;

}

Employees[] public employee;
mapping(string => uint256) public nameToSalary;

function store(uint256 _Salary) public ({

Salary = _Salary;
}

function retrieve() public view returns (uint256) {
return Salary;

}

function addPerson(string memory name, uint256 _Salary) public

employee.push (Employees (_Salary, name));
nameToSalary[name] = _Salary;

And the deploy.py script goes like this:

"count": 5

ARASHTAD.COM DESIGN AND DEVELOPMENT SOLUTIONS

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

A\ VAN=] ol VAN B

import json
from web3 import Web3

from solcx import compile standard, install solc
import os
from dotenv import load dotenv

load dotenv ()

with open("./SimpleStorage.sol", "r") as file:
simple storage file = file.read()

install solc("0.6.0")
print("installed")

compiled sol = compile standard(
{
"language": "Solidity",
"sources": {"SimpleStorage.sol": {"content":
simple storage file}},
"settings": {
"outputSelection": {
Mk, {
"x": ["abi", "metadata", "evm.bytecode",
"evm.bytecode. sourceMap"]

b,
b,

solc version="0.6.0",

)

with open("compiled code.json", "w") as file:
json.dump (compiled sol, file)

bytecode = compiled sol["contracts"]["SimpleStorage.sol"]
["SimpleStorage"] ["evm"] ["bytecode"] ["object"]

abi = json.loads(compiled sol["contracts"]["SimpleStorage.sol"]
["SimpleStorage"] ["metadata"]) ["output"] ["abi"]

| NARNASHTAD.COM DESIGN AND DEVELOPMENT SOLUTIONS |

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

‘*‘”“‘)/\R/\SHT/\D

<)

Notice that you should also install “dotenv package” using the following command in the
terminal:

pip install python-dotenv

BY TECODE AND ABI:

now if you print and bytecode:

print (abi)

Result:

[{'inputs': [{'internalType': 'string', 'name': ' name',6 'type'
'string'}, {'internalType': 'uint256', 'name': ' Salary',6 'type':
'uint256'}], 'name': 'addPerson', 'outputs': [], 'stateMutability'
'nonpayable’', 'type': 'function'}, {'inputs': [{'internalType'
'uint256', 'nmame': '', 'type': 'uint256'}], 'name': 'employee'
'outputs': [{'internalType': 'uint256', 'name': 'Salary',6 'type'
'uint256'}, {'internalType': 'string', 'name': 'name',6 'type'
'string'}], 'stateMutability': 'view', 'type': 'function'},
{'inputs': [{'internalType': 'string‘ 'name': '', 'type'
'string'}], 'name': 'nameToSalary', 'outputs': [{'internalType'
'uint256', 'name': '', 'type': 'uint256'}], stateMutablllty
'view', 'type': 'function'}, {'inputs': [], 'name': 'retrieve',
'outputs': [{'internalType': 'uint256', 'name': '', 'type':
'uint256'}], 'stateMutability': 'view',6K 'type': 'function'},
{'inputs': [{'internalType': 'uint256', 'name': ' Salary',6 'type':
'uint256'}], 'name': 'store', 'outputs': [], 'stateMutability'
'nonpayable', 'type': 'function'}]

print (bytecode)

| NARNASHTAD.COM DESIGN AND DEVELOPMENT SOLUTIONS |

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

Result:

608060..1ong number.. 6000033

Besides, once you run the python script, you will see that a json file is created in the directory
as the result of json.dump (compiled_sal, file) line.

So, let’s deploy our smart contract using Python web3 tools on a blockchain. For our first
experiences and for learning purposes, we use Ganache (remember we used JavaScript VM
and injected web3 as our test networks in remix IDE).

Ganache is a simulated blockchain designed for test and learning purposes and helps us
develop our local blockchain. It is also worth mentioning that it is not connected to any other
blockchains out there. However, it acts just the same as real-world one.

Once you install and open Ganache, you will be able to see that you are given 10 accounts with
their own addresses and private keys on them. (To see the private key, just click on the key
sign on the right side of every account)

-~ -
kéé} ACCOUNTS 10 BLOCKS &) TRANSACTIONS & | CONTRACTS *)) EVENTS) LDGS
e

CURRENT BL00N AL PHCE Sl LT HARTHGER METWORE I WL SEIVER MG ETATUS WO LA EWITCH
L] 2000300008 ETIIGTE MUNBGLACHER s HTTP127.0.0.71.T545 AUTOMINING QUECKSTART x

MNEMONIC
8x142FDbB3Bd3EBIBIB546E4DBA33111894a4619408 106.00

8xA598b2b5AaBa6la2bfcf2a549432A4E0aEf12676 106.08

Ox73EDCO6CE97T789659CE3DD26BTfFal7ABT33f24A 100.60

6;F#BS??dlcﬂ?dcl5?ClﬁBE&&BCfE?FE#ECEEfIGﬁD 166.080

@xeE6aDaFB12C439bBABBDFSCF50C3936aB2C67584 100.08

8x5939893cPa7ABB28C35F35d05767D819E95B5c48 106.68

@OES® mMg6eTYE2RF =% CNeE A TSR e

| owemmaneom o DESIENAND DEVELOPVENT SOLUTIONS |

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

)/\R/\S HTAD

A

@-!_!n.""iﬁgi ONRE A ® SR s

And if you look at the top of the Ganache IDE, you will be able to see the RPC server address
and NetworkID. Both of them are necessary for us to connect to the blockchain.

INSTALLING WEB3

Now, the next step to connect to the blockchain using python is to install web3.py. If you haven't
read the getting started with Dapps tutorials, you can follow along with these guides to be able
to install it on your operating system. However, These guidelines only show you how to install it
on Linux. For Windows, you might need to install some Visual Studio C dependencies that are
mentioned in the raised Error in the command prompt after you attempt to install it on windows.
Now on Linux, on VS Code terminal, write these 3 commands to be able to install the web3
module:

pip install eth-tester web3 pip install eth-tester[py-evm] pip3
install web3

And now we import the web3 module:

from web3 import Web3

NARNASHTAD.COM DESIGN AND DEVELOPMENT SOLUTIONS

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

f N\ ARASHTAD

CONNECTING TO GANACHE CLI
To connect to the blockchain instead of Metamask, we need an HTTP provider which for
Ganache is HTTP://127.0.0.1:7545 right under the RPC server. We also need the chain id
which we copy from the network id on top of the Ganache user interface and the address in
addition to its private key is also required:

web3 = Web3 (Web3.HTTPProvider ("HTTP://127.0.0.1:7545"))
chain id = 1337

address = "0xae2lA27b5771Ee8D53eC£f5b7b856B33C3B4AEESD"
private key =
"0x9cf74fb71811e4£360d£39e3c13790d8£fde312d353b8972937c8£596d052de45"

READY FOR DEPLOYING THE SMART CONTRACT

After defining the provider and an account, it is time to define our contract using the ABI and the
Bytecode of the SimpleStorage:

SimpleStorage = web3.eth.contract(abi = abi, bytecode = bytecode)

WHAT'S A NONCE?

Then, we need a nonce. A nonce is the abbreviation of a “humber used only once”. Besides, it's
a number that is added to an encrypted (hashed) block in a blockchain that when it is rehashed,
meets certain difficulty levels. The nonce is the number that miners are solving for. Here to get
a nonce from our address or in other words to get the latest transaction of our address, we
write:

nonce = web3.eth.getTransactionCount (address)

And if you print this variable, the terminal returns 0 as we have had no transaction. Having
defined all the above variables, we can now submit the transaction that deploys the contract:

transaction = SimpleStorage.constructor () .buildTransaction (
{
"chainId": chain_id,
"gasPrice": web3.eth.gas price,
"from": address,
"nonce": nonce,
}
)

NARNASHTAD.COM DESIGN AND DEVELOPMENT SOLUTIONS

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

A\ VAN=] ol VAN B

then we sign the transaction by writing:

signed_txn = web3.eth.account.sign_transaction(transaction,
private_ key=private key)

It is now the time to finally deploy our contract. As it might take some time when we work with
real blockchain test nets and providers like Infura, we print the level we are in, to be able to
track the process at the time of running the code:

print ("Deploying Contract..")

So our raw transaction is the one we deploy using the signed transaction:

tx hash = web3.eth.send raw transaction(signed txn.rawTransaction)

After the transaction is confirmed, we can say that it is finally mined and our contract is
deployed to the blockchain:

print ("Waiting for transaction to finish...")
tx receipt = web3.eth.wait for transaction receipt(tx hash)

print (f"Done! Contract deployed to {tx receipt.contractAddress}")

And if we run the code by typing:

python3 deploy.py

In the terminal, we will see a result like this:

Deploying Contract... Waiting for transaction to finish... Done!
Contract deployed to 0x88A33c204C622683Dc2b0aaD78d51B86a9b35CAB

Which approves the contract has been successfully deployed. Congratulations!

NARNASHTAD.COM DESIGN AND DEVELOPMENT SOLUTIONS

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

Now if we go to Ganache and check the balance of the first account that we copied its address
and private key, we will see that it is 99.99 which means that some of its balance has been

used for the gas fee.

| &,) ACCOUNTS K f AHSA M5 NTRACTS EVEN

o

AR PRICE £ LT HABLHE, METWERE I WAL SEAVER I STATUS WO SRLCE
20006000000 ETIINTS MUIRGLACHER 5T HTTP. 27.0.0.1:T545 AUTOMIRING QUICKSTART

CUBMENT BLoCH
1

MNEMONIC

ORE:

Bxae21A27b5771Ee8D53eCF5b7b856B33CIB4AEESD

o

B=60408607718912605CC6BTC232F0e54912C109061B 106.80 ETH

Pxbce35E707AD666667DOCDBA6I1a349EBBL8B4D30 106,00 ETH
ADDRESS BALANCE

Px01dB78760B2B8B76802B47dBf CAETDOEABE5488 100,88 ETH
BxCE@3EC67fBC5BA4abEADASA118eb5SFCOIdd13FC 106,88 ETH

AODRES

i BALANCE
8xB67C070622758532e771A75b256380b22608eEe4 106.80 ETH

@..‘-iﬁaa?uﬁi‘ OONCE al ® 5 R 1eus

And if we head over to transactions tab on the top, we will be able to see our transaction is
recorded there.

() TRANSACTIONS NTRACTS) EVENT
S

CUMRENT BLECH BAS PRICE Gkl LT HARDGHK METWORE I WPL SEIVER MBG ETATUS WORMEFALE
1 20008000000 (ral k] MUIRGLACHER T HTTP127.0.0.1 7545 AUTOMIRING QUECKSTART

©OF B B R-A BN N AN B LA R

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

"/”‘)AR/\SHTAD

<)

HOW T0O GUARD OUR PRIVATE KEY IN A SMART CONTRACT USINC

In this section, we are going to see how we can avoid pasting our private key inside our script
file and save it somewhere inaccessible to others. This may happen because we may share our
scripts on GitHub. The first thing that we should do here is to export the private key in our
console:

Export
PRIVATE KEY=0x9cf74fb71811e4£360d£39e3c13790d8fde312d353b8972937c8£5
96d052de45

And inside the script instead of pasting the private key itself, we write:

private _key = os.getenv ("PRIVATE KEY")

And now this way the private key saves just the same private key as we had pasted in front of
it. But notice that this method only works on Linux and Mac OS, but not on Windows. However,
there are ways to cover this on Windows. There is also another way to save the private key
somewhere safe and that is creating a .env file in your directory. To do so, first, make sure you
have dotenv python module installed on your os the way we did in the last section of our tutorial
and load it. In summary, make sure you add the following scripts in deploy.py file:

export
PRIVATE KEY=0x9cf74fb71811e4£360df39e3c13790d8fde312d353b8972937c8£5
96d052de45

And also for private key keep the private_key = os.getenv(“PRIVATE_KEY”) where it is. And in
the .env file, write:

export
PRIVATE KEY=0x9cf74fb71811e4£360d£39e3c13790d8£fde312d353b8972937c8£5
96d052de45

NARNASHTAD.COM DESIGN AND DEVELOPMENT SOLUTIONS

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

A\ VAN=] ol VAN B

Also to avoid publicizing it on GitHub create a .gitignore file and in it, write:

.env

HOW TO INTERACT WITH N\ SMART CONTRACT USING
PYTHON WEB3

Now that we have deployed the SimpleStorage.sol contract to the simulated blockchain on
Ganache, it's time to interact with it. Suppose we want to store a number like 38 and then be
able to retrieve it as well, we write:

simple storage =
web3.eth.contract (address=tx receipt.contractAddress, abi=abi)

print (f"Initial Stored Value
{simple_storage.functions.retrieve() .call()}")

greeting transaction =
simple storage.functions.store(38) .buildTransaction (

{

"chainId": chain_id,
"gasPrice": web3.eth.gas price,
"from": address,

"nonce": nonce + 1,

}
)

signed greeting txn = web3.eth.account.sign_ transaction(
greeting transaction, private_ key=private_ key)

tx _greeting hash =
web3.eth.send raw_ transaction(signed greeting txn.rawTransaction)

print ("Updating stored Value..")
tx _receipt = web3.eth.wait for transaction_receipt(tx _greeting hash)

print(simple_storage.functions.retrieve() .call())

ARASHTAD.COM DESIGN AND DEVELOPMENT SOLUTIONS

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

4d)

Notice that for the nonce, we wrote nonce+1 because every time we do something on
blockchain the nonce needs to be unique. And also remember that if you call the contract and
retrieve a number, there is no need for any transaction and before saving any number to the
contract, the result of retrieve will be 0 but after saving the number by creating the transaction
on the contract (for storing the number) the answer to retrieve call will be the saved number
which is 38. Now let’s see the result on the terminal:

Initial Stored Value 0 Updating stored Value... 38

Now if we go to Ganache, to the transactions, we are going to see the contract call with the blue
color and the details of the transaction.

T SO R g, Tt i
ACCOUNTS 12 | BLOCKS I'\.t/' TRANSACTIONS | | CONTRALTS .\ | EVENTS 1) LOGS
CLERRENT BL00 CAl BRLE £l LT HAFDA, METWOR it AT SERVER i ETATUR A CE
7 20000000000 BTINNTE MUIBGLACIER n HTTP 70,01 T545 AUTOMINING QURCKSTART

Bx815bd9af627b42c0f716c3f3c3cf401c342344de19b21756912a117ceBab69ed

Bx16b50594745963a8d9d5d4762aee73a53a8ddeb2afeb2c f2d2eB8bd365c9b5b3

Bxb42e37619679ced7eedcbaeetb75bf37a631e6326a0e93 feeba23ib95c5b2969h

Bx=3ebd45dfefdesarc5fd54f756achfb52a55b676a87b3de176aBaccéb8b3baaby

(:) .. l' = i.. :’ ﬂi S B E K ..' EE ﬁt OO ESATLR a4

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

4)

— . -
< | ACCOMUINTS 1 | BLOCKS |r9" TRANSACTIONS - | | CONTRACTS [\ | EVENTS £) LOGS

CUBRRENT BLOCH AR FHCE Gl LT ARG WETWOR If WAL SERVER G GTATUL WA ERACE
T 20003000000 ETINOTS MUIBGLACIER s HTTP1 27007 T545 AUTOMIRING QUNCKSTART

e TX OxB15bd9af627b42c0f716c3f3c3cf401c342344de19b21756912a117ceBa569e0

EVENTS

@-!;!n‘ Swilﬁli BomeEDaE v R R

And this our complete python code:

import json

from web3 import Web3

from solcx import compile standard, install solc
import os

from dotenv import load dotenv

load dotenv ()

with open("./SimpleStorage.sol", "r") as file:
simple storage file = file.read()

install solc("0.6.0")
print("installed")

compiled sol = compile standard(
{
"language": "Solidity",
"sources": {"SimpleStorage.sol": {"content":
simple storage file}},
"settings": ({

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

A\ VAN=] ol VAN B

"outputSelection": ({
Wk, {
"*": ["abi", "metadata",
"evm.bytecode", "evm.bytecode.sourceMap"]
}
}
b,
b,

solc _version="0.6.0",

)

with open("compiled code.json", "w") as file:
json.dump (compiled sol, file)

bytecode = compiled sol["contracts"]["SimpleStorage.sol"]
["SimpleStorage"] ["evm"] [

"bytecode"

]["object"]

abi = json.loads(compiled sol["contracts"]["SimpleStorage.sol"]
["SimpleStorage"] ["metadata"]) ["output"] ["abi"]

web3 = Web3 (Web3.HTTPProvider ("HTTP://127.0.0.1:7545"))
chain id = 1337

address = "0xae2lA27b5771Ee8D53eC£f5b7b856B33C3B4AEESD"

private _key = os.getenv ("PRIVATE KEY")

print (private key)

SimpleStorage = web3.eth.contract(abi = abi,bytecode = bytecode)

nonce = web3.eth.getTransactionCount (address)

transaction = SimpleStorage.constructor () .buildTransaction (
ichainId": chain_id,
"gasPrice": web3.eth.gas_price,

"from": address,
"nonce": nonce,

}

ARASHTAD.COM DESIGN AND DEVELOPMENT SOLUTIONS

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

A\ VAN=] ol VAN B

signed txn = web3.eth.account.sign_ transaction(transaction,
private key=private key)

print ("Deploying Contract...")

tx hash = web3.eth.send raw_transaction(signed txn.rawTransaction)
print ("Waiting for transaction to finish...")

tx receipt = web3.eth.wait for transaction receipt(tx hash)

print (f"Done! Contract deployed to {tx receipt.contractAddress}")
#interacting with the deployed contract

simple storage =
web3.eth.contract (address=tx receipt.contractAddress, abi=abi)

print (f"Initial Stored Value
{simple_storage.functions.retrieve() .call()}")

greeting transaction =
simple storage.functions.store(38) .buildTransaction (
{
"chainId": chain_id,
"gasPrice": web3.eth.gas _price,
"from": address,
"nonce": nonce + 1,
}
)
signed greeting txn = web3.eth.account.sign transaction(
greeting transaction, private key=private key)

tx_greeting hash =
web3.eth.send raw transaction(signed greeting txn.rawTransaction)

print ("Updating stored Value...")
tx receipt = web3.eth.wait for transaction receipt(tx greeting hash)

print (simple storage.functions.retrieve() .call())

ARASHTAD.COM DESIGN AND DEVELOPMENT SOLUTIONS

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

A\ VAN=] ol VAN B

INTERACTING WITH SMART CONTRACTS USING COMMNAD
LINE INTERFACE (CLI)

Up to now, we have contributed with the Ganache interface. But, what if we want to interact with
it using Command Line Interface also known as CLI? To do that, we need to install a couple of
things. First, you should install node.js using this link.

You also need to install ganache-cli and there are 2 ways to so do that.

1. Installing yarn

npm install —-global yarn

And

2. Installing through npm command:

yarn global add ganache-cli

You can make sure about the installation by writing:

npm install -g ganache-cli

Once you made sure that it has been installed, you can write in your terminal:

ganache-cli -version

And this is going to show all the data of the Ganache account without the interface being open,
including the accounts, private keys, and so on.

NARNASHTAD.COM DESIGN AND DEVELOPMENT SOLUTIONS

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

‘ ‘/\R/\SHT/\D

You might always need to get the same private keys from the Ganache CLI. So, you can type:

ganache-cli

And this gives you always the same wallet addresses. Also, notice that when you are working
with the ganache-cli, you should have another terminal on VS Code to run the deploy.py file
and interact with the smart contract so that you can use the first one for ganache-cli.

ganache-cli -deterministic

LAST STEPS OF INTERACTING WITH N\ SMART CONTRACT
USING PYTHON WEB3: INFURA HOST NODE

Up to now, we have deployed our contracts on different test net blockchains. In Remix IDE, we
deployed our contract on injected web3 and JavaScript VM, and on Python, we have used
Ganache as a simulated blockchain. Now, let’s deploy our smart contract using Python Web3
tools. If we want to switch to mainnet blockchain and run our contract transactions on it, we
have 2 options. The first one is to download all the Ethereum blockchain records using the Geth
command from the go Ethereum library. Although this will give you a full node Ethereum
blockchain locally, it is going to cost you so much memory, bandwidth, and a full-time running
computer only to give you a full node on the Ethereum blockchain. However, this method is
useful for some purposes but for our case, we can use another method which is using a host
node like Infura.

Using Infura:

So in order to use Infura, you need to simply sign up or log in (if you have signed up before).
Then, after you enter your profile, copy the required endpoint (which could be mainnet or any
testnet like Rinkeby, Faucet, Ropsten .etc) from the settings and paste it into the HTTP Provider
of your script.

NARNASHTAD.COM DESIGN AND DEVELOPMENT SOLUTIONS

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

‘ A\ VAN=] ol VAN B

A

E INFURA PRODUCTS » CUSTOMERE PRICING DOCE w RESOURCES v EN w LOGIN

The World's Most sy
Powerful Blockchain
Development Suite

dashboard

Bircught 1o you by Meed & custom solutionT Contact s

CREATE NEW PROJECT

PRODUCT
PROJECT NAME

pythor

Here, we should use Rinkeby because we do not want to spend real ETH! And as you

remember we have received some Rinkeby ETH from its Faucet in our Metamask wallet
Rinkeby account. The format of the endpoint is like this:

https://.infura.io/v3/

NARASHTAD.COM DESIGN AND DEVELOPMENT SOLUTIONS

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

Ome Wm0 TEZRES @oeEay g wn

We can copy this to our code, so instead of:

web3 = Web3 (Web3.HTTPProvider ("HTTP://127.0.0.1:7545"))

We write:

web3 = Web3 (Web3.HTTPProvider ("https://.infura.io/v3/ "))

Notice that you should enter the type of your endpoint (which is Rinkeby here) and your special
project ID because it varies from one account to another. Also, remember that you shouldn’t
share your Infura endpoint URL with anybody so we use the same technique as we used for the
private key. On .env file we write:

export Infura EndPoint = "https://.infura.io/v3/ "

And in the deploy.py file we write:

web3 = Web3 (Web3.HTTPProvider (os.getenv ("Infura EndPoint")))

DESIGN AND DEVELOPMENT SOLUTIONS

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

4d)

and now we need a chain ID which we can get from this link.

B#® oxasee.7i7

Chainlist

Helping users connect to
EVM powered networks

Search Networks Rinkeby

Chainlist can use the

Rinkeby Boba Network Rinkeb...

3ir 1D and
a 28 ETH

() View Source Code @) Join our Discord

OmEB MmO TE2ER=E6 BOCE A5 R rese

For Rinkeby, the chain id is 4. So, we enter it in our code:

chain id = 4

Then, we need to copy our Metamask address and private key from our wallet account and
paste it into our python file. (private_key on .env file).

And if we run our deploy.py file, the result will be as follows:

installed Deploying Contract... Waiting for transaction to finish...

Done! Contract deployed to
0x7F0£c6939B12CE506337294c4c96C2d3F64F9DF6 Initial Stored Value 0

Updating stored Value... 38

As you can see, since we are running our contract on a mainnet, again the process is a lot
slower compared to what we saw when we used Ganache.

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

You can also track the above transaction from (https://rinkeby.etherscan.io/) using the receipt
transaction contract address that we have just printed on the terminal.

Contrect Address OxTFOMRETIPA12CESO633T294c4cHECTdIFEAPIDFS | Etherscan — Mad|la Firefax

BB Erhareum AF1 | IFFS AP A (%

“— c

ﬂ" Etherscan

@ Contract
Contract Overview

@.!;gnn ‘BREEE T Fuk:Hcl” N RTEH

You can see 2 transactions are recorded. The first one is the one related to when we deployed
the contract.

Rinkeby Transaction Hash (Tohash) Details | Etherscan — Mazills Firefox

BB Ethereum AF1|IFFS AP« % T Rinkeby Transaction F

&« G

m Etherscan

Transaction Details

TR FuR:NoN™ I SFrl It

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

4d)

And the 2nd one is related to when we stored the number 38 in it.

Rinkeb

@-."?-n‘?pﬂldi$~ (TR Nuk Moo= BN =Y

Congratulations! We have finally managed to deploy a smart contract using Python Web3 tools
on mainnet.

Our complete python code goes like this:

import json

from web3 import Web3

from solcx import compile standard, install solc
import os

from dotenv import load dotenv

load dotenv ()

with open("./SimpleStorage.sol", "r") as file:
simple storage file = file.read()

install solc("0.6.0")
print("installed")

compiled sol = compile standard(

{

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

A\ VAN=] ol VAN B

"language": "Solidity",
"sources": {"SimpleStorage.sol": {"content":
simple storage file}},
"settings": {
"outputSelection": {
Wk, {
"x": ["abi", "metadata", "evm.bytecode",
"evm.bytecode.sourceMap"]

b,
b,

solc version="0.6.0",

)

with open("compiled code.json", "w") as file:
json.dump (compiled sol, file)

bytecode = compiled sol["contracts"]["SimpleStorage.sol"]
["SimpleStorage"] ["evm"] ["bytecode"] ["object"]

abi = json.loads (

compiled sol["contracts"]["SimpleStorage.sol"] ["SimpleStorage"]
["metadata"]

) ["output"] ["abi "]

web3 = Web3 (Web3.HTTPProvider (os.getenv ("Infura EndPoint")))
chain id = 4

address = "O0x25E681EE76469E4cF846567b772e94e082907117"
private key = os.getenv ("PRIVATE KEY")

SimpleStorage = web3.eth.contract(abi = abi,bytecode = bytecode)
nonce = web3.eth.getTransactionCount (address)

transaction = SimpleStorage.constructor () .buildTransaction (
{
"chainId": chain_id,
"gasPrice": web3.eth.gas_price,
"from": address,
"nonce" : nonce,

}

ARASHTAD.COM DESIGN AND DEVELOPMENT SOLUTIONS

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

A\ VAN=] ol VAN B

signed txn = web3.eth.account.sign_transaction(transaction,
private_ key=private key)
print ("Deploying Contract...")

tx hash = web3.eth.send raw_transaction(signed txn.rawTransaction)
print ("Waiting for transaction to finish...")

tx receipt = web3.eth.wait for transaction receipt(tx hash)

print (f"Done! Contract deployed to {tx receipt.contractAddress}")
#interacting with the deployed contract

simple storage =
web3.eth.contract (address=tx_receipt.contractAddress, abi=abi)
print (f"Initial Stored Value
{simple_ storage.functions.retrieve() .call()}")
greeting transaction =
simple storage.functions.store(38) .buildTransaction (
{
"chainId": chain_id,
"gasPrice": web3.eth.gas_price,
"from": address,
"nonce": nonce + 1,
}
)

signed greeting txn = web3.eth.account.sign_ transaction (

greeting transaction, private key=private key)

tx greeting hash =

web3.eth.send raw transaction(signed greeting txn.rawTransaction)
print ("Updating stored Value...")

tx receipt = web3.eth.wait for transaction receipt(tx greeting hash)

print(simple storage.functions.retrieve().call())

For explanations of the above code you can refer to the previous sections. Because this script
is the same as the previous articles with the difference that we have changed the HTTP
Provider, the chain id, account address, and the private key.

ARASHTAD.COM DESIGN AND DEVELOPMENT SOLUTIONS

https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

‘/\R/\S HTAD

A

SUMMING UP

In this tutorial, we have got started with python web3 tools to be able to deploy our
Solidity smart contracts outside of Remix IDE. The IDE that we have chosen to work
with is VS Code. We also installed some dependencies to work with python web3
tools. Python web3 tools compile the Solidity smart contracts and create some JSON
files containing the bytecode and opcodes and ABI which is necessary to deploy our
contracts.

Besides, we learned how to use Ganache IDE as a simulated blockchain. We also
used the RPC URI, chain id, test accounts, their addresses, and private keys to
deploy the smart contract called simple storage. We have also managed to install the
web3.py module.

Finally, we have managed to connect to the Infura host node as an alternative for
Ganache simulated blockchain. As a result, we have dealt with a more realistic kind of
blockchain. We have also used chainlist as a way to retrieve the chain id.
Furthermore, As we have deployed our smart contract on the Rinkeby testnet, we
checked Rinkeby Etherscan to check the records of our transaction on the Ethereum
Rinkeby testnet blockchain.

\'ml
Tu he

&2
<

)
2

FOLLOW US

RNCHS)
®E e
LNCHED

LGN
)

EVUIG)

NARNASHTAD.COM DESIGN AND DEVELOPMENT SOLUTIONS

https://www.linkedin.com/company/arashtad
https://codepen.io/arashtad
https://jsfiddle.net/user/arashtadcompany/
https://dribbble.com/Arashtad
https://www.behance.net/arashtad
http://arashtadstudio.tumblr.com/
https://www.slideshare.net/Arashtad
https://www.youtube.com/channel/UCoIrn2XzoaJT6vz6NuB8iTQ
https://vimeo.com/arashtad
https://twitter.com/arashtad
https://www.reddit.com/user/ArashtadStudio
https://www.quora.com/profile/Arashtad
https://t.me/arashtadstudio
https://Arashtad.com/
https://Arashtad.com/
https://arashtad.com/services/

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31

